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Due to the enormous progress in deep learning, speech enhancement (SE)
techniques have shown promising efficacy and play a pivotal role prior to an
automatic speech recognition (ASR) system to mitigate the noise effects. In this
article, we put forward a novel cross-domain time-reversal enhancement network
(CD-TENET). CD-TENET leverages the time-reversed version of a speech signal and
two effective features that consider the phase information of a speech signal in the
time domain and the frequency domain, respectively, to promote SE performance
for noise-robust ASR. Extensive experiments demonstrate that CD-TENET can not
only recover the original speech effectively but also improve both SE and ASR
performance simultaneously. More surprisingly, the proposed CD-TENET method
can offer a marked relative word error rate reduction on test utterances of
scenarios contaminated with unseen noises when compared to a strong baseline
with the multicondition training setting.

With the significant breakthroughs of deep
learning with deep neural networks
(DNNs) in the recent past, current auto-

matic speech recognition (ASR) systems have exhib-
ited unprecedented performance and reached human
parity. However, when deploying a well-trained ASR
system into real-world use cases, the performance
might be seriously degraded because of environmen-
tal interference such as background noise, reverbera-
tion, voices from surrounding speakers (babble noise),
and others. To mitigate these deteriorating effects so
as to improve the real-world ASR performance,
researchers and practitioners have developed a great
number of techniques. Among these techniques,
speech enhancement (SE) has seen widespread adop-
tion as a preprocessing stage that forms the

cornerstone to counteracting environmental interfer-
ence prior to acoustic modeling.

In general, speech signals are usually character-
ized by long sequences as well as their complicated
hierarchical structure in which the relevant informa-
tion may be distinct at different granularities (pho-
nemes, syllables, words, etc.). Therefore, it still
remains challenging to completely eliminate the noise
component in speech signals. As for the noisy speech
signals received from a microphone array structure,
multichannel approaches usually can behave very well
and reduce the majority of noise effects on speech.
Contrastively, in most of real-world use cases that
lack multiple array microphones, single-channel SE
techniques are typically less effective and only yield
moderate improvements in speech quality and intelli-
gibility metrics like perceptual evaluation of speech
quality (PESQ)1 and short-time objective intelligibility
(STOI).2 Although there is a great deal of effort that
has been demonstrated fruitful, it still remains chal-
lenging to improve the SE performance under some
severe conditions, such as the low signal-to-noise
ratio (SNR) and nonstationary noise scenarios.
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Since the north star of SE is to recover and
achieve the high quality and/or intelligibility of
speech, a variety of sophisticated methods have
been well-practiced to improve the human auditory
perception or optimize the corresponding objective
metrics, such as PESQ and STOI. For instance,
deep feature loss3 minimizes the distance between
clean speech and its enhanced counterpart in
latent spaces using a pretrained audio scene classi-
fication network, which gains considerable improve-
ments on both the objective quality metrics and
the perceptual evaluation of human listeners. Fur-
thermore, phone-fortified perceptual loss (PFPL)4

was proposed to extend this idea by adopting a
pretrained self-supervised model. Beyond minimiz-
ing the above perceptual losses for SE, another
option is to optimize the target metrics directly by
utilizing the generative adversarial network (GAN).
Notably, MetricGAN5 has been demonstrated to
achieve effective SE performance by connecting
the PESQ metric straightly to the discriminator.

Most advanced SE techniques that optimize the
perceptual quality usually can yield improvements
in terms of PESQ metrics. However, this does not
necessarily transfer well into the downstream ASR
performance, especially when an ASR system is
trained with a great amount of speech data con-
taminated by various types of noise (i.e., the so-
called multicondition training setting). This may be
due to the artifacts introduced by the front-end
SE module and the discrepancy of the training
objectives between SE and ASR. To tackle this
problem, several efforts have been made to develop
robust single-channel SE methods that could
better benefit the ASR performance. For example,
the joint training scheme6 is established along this
direction.

In light of the above-mentioned observations, the
main contributions of this article can be summarized
as follows.

1) We design a bi-projection fusion (BPF) mechanism
to formulate two novel cross-domain modeling
frameworks, CD-TCN7 and CD-DPTNet,8 for robust
single-channel SE, which leverage both time- and
frequency-domain features and dramatically
reduce undesired noise effects on speech for supe-
rior SE andASR performance.

2) In further conjunction with our recently pro-
posed approach, namely the time-reversal
enhancement network (TENET),9 our framework
can obtain remarkably better results on the Voi-
ceBank-DEMAND benchmark dataset in relation

to some top-of-the-line methods. Particularly,
the framework behaves quite well in the test set
of scenarios contaminated with low SNRs and
nonstationary noise sources.

3) Through our experimental analysis, we demon-
strate that the time-domain features, i.e., wave-
grams, are probably the key factor to promote
the performance of SE and robust ASR.

RELATEDWORK
SE Algorithms
Considering a discrete-time noisy signal [n] captured
by a single-channel microphone, we can formulate the
following equation:

y n½ � ¼ h n½ ��x n½ � þ d n½ � (1Þ

where x[n] is the target noise-free speech signal, h[n]
is the convolutional noise, “�” denotes the convolu-
tion operation, d[n] is the additive noise, and n is the
time index. In this study, convolutional noise h[n] like
channel mismatch or reverberation is excluded from
consideration and assumed to be negligible. We
solely focus on the removal of additive noise [n] to
recover the speech signal x[n] from the noisy signal
y[n].

Most of the early studies on noise reduction analyze
noisy speech signals in the acoustic frequency domain
of signals via short-time Fourier transform (STFT). Such
techniques employ the statistics drawn from the short-
time spectra of speech to suppress noise. Notably, the
prevalent DNN approaches have been adopted to
develop SE techniques with overwhelming success in
recent years. These DNN-based SE methods can be fur-
ther divided into two broad categories, i.e., mapping-
based and masking-based. For instance, Lu et al.10 is the
first to employ a deep denoising autoencoder (DDAE) to
map the power spectrum of noisy speech to that of its
clean counterpart directly. Wang et al.11 proposed to use
a DNN-based model to implicitly predict a time-fre-
quency (T-F) mask that applies to a noisy spectrogram
for SE. In particular, pursuing an effective mask for sepa-
rating the speech and noise feature representations has
become one of the most predominant directions for the
SE research. The primary DNN-enabled masking algo-
rithms, including, but is not limited to, ideal binary mask
(IBM) and ideal ratio mask (IRM),11 are mostly conducted
on themagnitude spectrogramof speech.

In the following sub-section, we briefly introduce
the concept of the masking algorithm, which will serve
as the main component module of our SE framework
in the next section.
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Masking-Based SE
A masking-based SE is usually composed of an
encoder-decoder architecture and a mask estimation
network to separate the speech and noise in the fea-
ture space. Firstly, the encoder is designed to trans-
form the speech signal into a series of N-dimensional
representations, which can act as either a conven-
tional STFT operated in the frequency domain or a
trainable 1-D convolution operation learned through
the network in the time domain. The whole encoding
operation can be formulated as follows:

W ¼ F UXð Þ (2Þ

where X is a matrix representing K overlapped seg-
ments of length L with respect to an input noisy signal
y½n�, U 2 RN�L is a linear transformation which con-
tains N basis functions, Fð�Þ is an optional activation
function, and W 2 RN�K is the feature representa-
tion for subsequent mask prediction.

To effectively capture the temporal information
and consider the long-term dependency of frames in
the noisy signal, the mask estimation network can be
created by stacking BLSTM or dilated convolution
layers such as the temporal convolution network
(TCN).7 However, current state-of-the-art models use
the dual-path modeling technique called DPTNet,8

which significantly improves the accuracy of the mask
prediction. In addition, the output of the mask estima-
tion network can directly be a single mask for the tar-
get speech, and the other choice is to predict two
masks respectively for speech and noise, denoted by

Mx;Md½ � ¼ Muu Wð Þ (3Þ

where Muuð�Þ represents the mask estimation net-
work, and Mx and Md are the masks for the target
speech and noise, respectively.

After that, we can obtain the enhanced represen-
tation Dxx by applying the speech mask Mx to the fea-
ture representation W , which essentially is a mixture
of the target speech and noise:

Dxx ¼ Mx � W (4Þ

where � is the element-wise multiplication. The
enhanced waveform is obtained from Dxx using a
decoder, which can be formulated as another matrix
multiplication:

Ŝ ¼ VDxx (5Þ

where Ŝ 2 RL�K contains the reconstructed speech
segments with respect to X, and V 2 RL�N consists
of the basis functions involved in the decoder. For

frequency-domain SE, the decoder is usually the
inverse STFT (iSTFT), while it can be a 1-D transpose
convolution operation for time-domain SE. Finally, we
can simply use the overlap-add method to derive the
enhanced waveform from Ŝ.

Speech Feature Representations
To extract the rich and meaningful speech features for
masking-basedSE, conventional approachesoften intro-
duce STFT along with some bits of prior knowledge to
obtain the frame-wise features. In this way, we can
reduce the computational cost as well as carry out the
T-F analysis. To list a few, hand-crafted features such as
magnitude spectrograms and logarithmic mel-scaled
spectrograms have strong visualization capability that
helps to discriminate between speech and noise. Since
many researches have shown that the phase informa-
tion is crucial to the success of SE, complex-valued spec-
trograms have been well-studied in the past few
years.12,13 To take the phase into account, we can either
extract the magnitude and phase parts simultaneously
in the (short-time) frequency domain of speech signals,
or operate speech signals in time domain directly. Both
directions have been proven effective and surpass previ-
ous attempts that process only magnitude spectro-
grams.7,13 Thanks to the remarkable advances of deep
learning, many researches explore the possibilities of
extracting features from the raw waveform domain for
various tasks via a DNN. The majority of them exploit
variants of convolutional neural network (CNN) for fea-
ture extraction, and it is believed that the first convolu-
tion layer is the most crucial part in waveform-based
CNNs.14 For example, Conv-TasNet7 proposes to use
1-D convolution layer instead of STFT to extract
time-domain features for speech separation. Fur-
thermore, SincNet adopts the parameterized sinc
functions into a CNN architecture to simulate
the band-pass filter for both speaker and speech
recognition.14 Note here that, the above-mentioned
methods all achieve significant results compared to
the frequency-domain methods. In particular, such
features extracted by a 1-D convolution layer are
also employed in the state-of-the-art audio pattern
recognition system, PANNs,15 and they are called
“wavegrams” instead.

In contrast to spectrograms, the wavegrams
derived from the DNN-based architecture are more
like data-driven representations of speech. When only
few training samples are available, it might fail to per-
form well, probably leading to incorrect estimation of
the distribution for speech features.13 Consequently,
how to take advantages of both time-domain and
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frequency-domain features for DNN-based algorithms
to benefit SE is still worth further investigation.

METHODOLOGY
In this section, we introduce a novel cross-domain
modeling framework, which consists of a cross-
domain (CD) encoder, a mask estimation network, and
a decoder. This novel SE framework can harness both
time- and frequency-domain features of speech sig-
nals to improve SE performance in a synergetic way.
Due to the versatility of this framework, our proposed
method has a few variants that can be integrated with
other approaches. Specifically, we consider three
types of cross-domain models in this work. When
in conjunction with a TENET, as illustrated in Figure 1,
we refer it to as CD-TENET. In the following, we
describe the ingredient components of the proposed
framework.

Cross-Domain Modeling Framework
As depicted in Figure 2, the input noisy speech signal
is converted to time-domain and frequency-domain
feature representations, “wavegrams” and “spectro-
grams,” respectively, and both of them retain the
phase information of the input signal. The wavegrams
are generated from a trainable 1-D convolution layer,
while the spectrograms derived from the conventional
STFT with discrete Fourier basis functions are non-
trainable. Note here that, the “spectrograms” used in
this work have real and imaginary parts that are struc-
tured as in the article by Koyama et al.13 These two-
domain feature representations are calculated

concurrently and then spliced together to perform the
subsequent mask estimation.

To further extract the shared information across
the two distinct features, we have developed a novel
fusion scheme called the BPF module in previous
work.16 Conceptually similar to the recent attempt of
the computer vision community, the BPF module is
designed to learn the relation between the input rep-
resentations. The corresponding work flow is opera-
tionalized as shown in Figure 3, whose details are
illustrated as follows.

Given the two branches of feature representation,
namely the wavegrams Fc and spectrograms Fs, we
first transform them into two new features individu-
ally, F�c and F�s, both of which have the same dimen-
sion. Next, in order to exploit both branches and
balance the fusion procedure, we use the concatena-
tion of F�c and F�s to estimate a ratio mask M . Finally,
we apply this mask to both branches and in turn gen-
erate the BPF feature. The whole procedure can be
formulated as

F�c ¼ Cc Fc; ucð Þ (6Þ
F�s ¼ Cs Fs; usð Þ (7Þ
M ¼ sigmoid CM concat F�c; F�sð Þ; uMð Þð Þ (8Þ

FBPF ¼ M � F�c þ 1�Mð Þ � F�s (9Þ

where Cc, Cs, and CM are projection layer operations
with parameters uc, us; and uM , respectively, M is the
estimated ratio mask with the same dimension as F�c

and F�s; and FBPF is the output feature of BPF.
Finally, the obtained BPF feature serves as an aux-

iliary input concatenated with the wavegrams Fc and

FIGURE 1. A schematic diagram of the CD-TENET framework.
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spectrograms Fs to be passed to the mask estimation
network, which can be TCN7 or DPTNet.8 For an illus-
tration in Figure 2, we use DPTNet to form the CD-
DPTNet system that integrates cross-domain clues of
a speech signal, as well as their BPF features, for effec-
tive SE.

Time-Reversal Enhancement Network
Apart from the features in the time domain and the
frequency domain, we seek to discover other charac-
teristics of the speech signal to boost the SE perfor-
mance. In our recent work, a TENET,9 we are the first
to propose to utilize the reversed speech on SE, and it
has been proven that the reversed speech possess
common temporal characteristics as the original (for-
ward) speech due to their spectrograms share the
same autocorrelation function. Thus, the original and

reversed speech signals might be additive to each
other in the learning of an SE model.

As an illustration in Figure 1, TENET consists of a
time-reversal Siamese network in tandem with a set of
data augmentation techniques. The time-reversal Sia-
mese network is equipped with Siamese SE models
and forms a two-stream architecture, namely, the for-
ward stream and reversed stream as two different
inputs. To be more specific, the forward stream
receives the noisy signal xf ½n�, which is converted to
approximate its clean counterpart yf ½n� as normal,
while the reversed stream takes the reversed version
of xf ½n� as the input, viz. xr ½n� ¼ xf ½L� n�, to approxi-
mate its clean duplicate yr ½n� ¼ yf ½L� n�, where L is
the length of xf ½n�.

During the training phase, three waveform-based
data augmentation schemes are employed: speech per-
turbation, time shifting, and sample masking, which are
all conducted on-the-fly to help the Siamese network to
learn the more powerful features. In the following, we
briefly introduce these constituent components.

1) Speech perturbation is a simple yet effective
technique broadly used for acoustic modeling. It
perturbs the speed of the input signal by a given
factor fsp and it modifies the pitch of the
speech. In this work, fsp is randomly selected
from 0.95 to 1.05.

2) Time shifting serves as a straightforward data
augmentation approach that shifts the audio
samples to the left or right with fshift seconds. In
our experiments, we uniformly choose fshift from

FIGURE 2. Schematic diagram of the CD-DPTNet system.

FIGURE 3. Our proposed BPF module.
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0 to 0.625, and we always apply right shift to the
audio.

3) Sample masking zeros out a portion of the audio
samples, making the masked speech segments
silent. Thereby, it encourages the model to pre-
dict the clean waveform by considering the con-
text information. There are two hyperparameters
in sample masking: the length of each mask,
denoted by t, and the maximum number of
masks, denoted by ms. We set t to a fixed value
10, and choose ms from a uniform distribution in
the interval [0, 150].

At inference time, these data augmentation tech-
niques are detached, and we can simply use one of
the streams (SE models) for inference without any
additional cost.

Loss Function
When adopting an SE technique as the front-end proc-
essing, the performance of the downstream ASR is
usually degraded. An underlying reason is that the
denoising algorithms in SE usually introduce artifacts
to the processed utterance. Even though these arti-
facts do not have much impact on the human percep-
tion, they inevitably distort the original speech
structure and cause the speech feature mismatch in
the subsequent ASR system. To minimize the artifact
distortion between the clean speech s and enhanced
speech ŝ; we use the negative scale-invariant signal-
to-distortion ratio (SI-SDR)17 as a loss function, which
can be formulated as follows:

starget ¼ ĥs; sis
ksk2 ; (10Þ

enoise ¼ ŝ � starget (11Þ

LSI�SDR s; ŝð Þ ¼ � 10 � log 10

kstargetk2
kenoisek2

 !
: (12Þ

On the other hand, to consider the perceptual
quality for optimization, PFPL4 is adopted as an auxil-
iary loss to form a hybrid loss in TENET to minimize
the perceptual distance:

LPFPL s; ŝð Þ ¼ Es;̂s�D kFwav2vec ŝð Þ �Fwav2vec sð Þk1½ � (13Þ
Lhybrid s; ŝð Þ ¼ LSI�SDR s; ŝð Þ

þ a � LPFPL s; ŝð Þ (14Þ

where s and ŝ are sampled from the training dataset
D; Fwav2vec is the pretrained wav2vec encoder,18 and
a is a tunable weight parameter. Finally, a weighted
sum of the hybrid losses for the reversed stream and

the forward stream is used to train the component
models of the framework

Ltotal s; ŝð Þ ¼ b � Lforward
hybrid s; ŝð Þ

þ g � Lreversed
hybrid s; ŝð Þ (15Þ

where b and g are tunable weight parameters.

EXPERIMENTS
Corpora
To provide solid evidence of the effectiveness for our
proposed methods, we conduct an extensive set of
empirical experiments on the VoiceBank-DEMAND19

dataset, which is a widely-adopted, open-source
benchmark corpus for SE. In the training set, 11,572
utterances (from 28 speakers) are presynthesized with
10 types of noise from the DEMAND database at four
different SNR values: 0, 5, 10, and 15 dB, while the test
set contains 824 utterances (from 2 speakers) con-
taminated by five types of noise at SNR values of
2.5, 7.5, 12.5, and 17.5 dB. As to the training of the com-
ponent models of various SE systems, around 200
utterances are set aside for validation, while the others
are for training. In the following ASR experiments, we
adopt two configurations of acoustic models for com-
parison, i.e., CCT-AM and MCT-AM. The CCT-AM is
trained with all of the clean-condition utterances in
VoiceBank except the test ones. In contrast, MCT-AM
is trained with noise-corrupted multicondition data,
which are synthesized by adding the clean recordings
with 13 types of noise sources (distinct from the
test set) from DEMAND with SNR values ranging from
0 to 15 dB. To examine the generalization ability, we also
create another test set apart from the original one. Spe-
cifically, the noisy data is generated by mixing the noise
sources complied from the QUT-NOISE20 dataset, which
contains nonstationary noise at SNR values of -5, 0, 5,
and 15 dB, to simulate a more severe test scenario. It is
referred to as the VoiceBank-QUT-NOISE test set in the
following experiments.

Note that all of the speech signals used for the
experiments are resampled to 16-kHz, and the back-
end ASR systems, CCT-AM and MCT-AM, are both
built on hybrid DNN-HMM acoustic models, which are
the factorized time-delay neural networks trained with
lattice-free MMI objective function using the Kaldi
toolkit.

SE System Configuration
In the settings of SE experiments, we choose three
types of models, TCN,7 DPTNet,8 and TENET,9 as the
backbones to form the corresponding cross-domain
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modeling frameworks, following their respective best
hyperparameters settings for training. In the CD
encoder, we take both time-domain (wavegrams) and
frequency-domain (spectrograms) features with 256
dimensions, and the window size is set to 16 with 1/2
overlapping. The number of hidden units in the projec-
tion layer of the BPF module is set to 128 to obtain
128-dimensional BPF features.

Furthermore, in order to explore the effectiveness
of our proposed method, we take several top-of-the-
line SE models for comparison: STFT-TCN,13 Conv-Tas-
Net,7 DPTNet,8 DCCRN,12 PFPL,4 MetricGANþ,5

CDPT,9 and TENET.9 As for evaluation, PESQ (short for
Perceptual Evaluation of Speech Quality; wide-band
version)1 and SI-SDR17 are adopted as the front-end SE
metrics to measure the speech quality and artifact
distortion, respectively. On the other hand, we use the
word error rate (WER) metric to evaluate the back-end
ASR performance and meanwhile represent the
speech intelligibility instead of using STOI.2

Preliminary Experiment
At the outset, we compare our approach to other
methods using different encoder–decoder architec-
tures with either one of two mask estimation net-
works, viz. TCN and DPTNet, respectively. As
presented in Table 1, we can markedly observe that
the further utilization of the MCT data enables the
resulting MCT-AM to obtain considerable WER reduc-
tions in comparison to CCT-AM. Based on MCT-AM,
we further build different SE systems and look into
their performance. First, it is worth mentioning that all
of the methods compared here promote both SE and
ASR metrics, especially those methods that employ
DPTNet as the mask estimation network. Second, in

contrast to frequency-domain approaches, the time-
domain approaches can obtain higher SI-SDR scores
and deliver more improvements on WER, while losing
some quality metrics, i.e., PESQ, in the DPTNet case.

In particular, when adopting our proposed method,
models that integrate the cross-domain information
can lead to the optimal performance in terms of
PESQ, SI-SDR, and WER in both cases (CD-TCN and
CD-DPTNet), which also reveals that this framework
can be effective for leveraging the advantages of both
domain features.

For clarity, we choose the best-behaved model,
CD-DPTNet, for comparison in subsequent experiments.
Moreover, CD-DPTNet is further employed as the Sia-
mese SE models being integrated with the TENET
approach, which in turn create a more robust SE frame-
work referred to as CD-TENET for the following sections.

ComparisonWith State-of-the-Art
Systems
Table 2 lists the experimental results of the presented
CD-TENET and a series of top-of-the-line systems. As
shown in this table, the proposed CD-TENET, which lev-
erages the time-reversed speech and a set of data aug-
mentations, achieves considerably higher PESQ and
ASR performance than CD-DPTNet and the other sys-
tems, especially in the case of VoiceBank-QUT-NOISE,
where the test set is contaminated with low SNR and
nonstationary noise sources.

In contrast to TENET, CD-TENET that introduces
the cross-domain information as well as their BPF
features also delivers substantial improvements on
VoiceBank-QUT-NOISE, which means that this cross-
domain modeling framework and the time-reversal
approach are additive to each other to exhibit superior

TABLE 1. PESQ, SI-SDR (dB), WER (%) results of different cross-domain models on voicebank-demand. “f,” “t,” and “c” denote

frequency, time, and cross domains, respectively.

SE Model Domain Encoder / Decoder Mask Estimation Network VoiceBank-DEMAND

PESQ SI-SDR WER

No process (CCT-AM) � � � 1.97 8.45 23.76

No process (MCT-AM) � � � 1.97 8.45 8.31

STFT-TCN13 F STFT / ISTFT TCN 2.48 18.33 8.24

ConvTasNet7 T 1-D Conv / 1-D Transpose Conv 2.52 19.29 7.44

CD-TCN16 C CD Encoder / 1-D Transpose Conv 2.63 19.38 7.07

CDPT9 F STFT / ISTFT DPTNet 3.01 19.06 6.99

DPTNet8 T 1-D Conv / 1-D Transpose Conv 2.78 19.34 6.87

CD-DPTNet C CD Encoder / 1-D Transpose Conv 3.01 20.00 6.81
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capabilities on noise suppression in unseen noise sce-
narios. Although CD-TENET gets a slightly worse PESQ
score than TENET on VoiceBank-DEMAND test set, the
degradation has little effects on the ASR performance,
and CD-TENET still outperforms other methods in over-
all performance. More surprisingly, when adopting CD-
TENET as front-end SE prior to the strong baseline, i.e.,
MCT-AM, we can obtain a significant relative WER
reduction of 43% on VoiceBank-QUT-NOISE.

Analysis on BPFModule
In order to have a more comprehensive understanding
of the proposed cross-domain modeling framework,
we conduct a visual analysis on the BPF module here.
Due to that the design of the BPF module is to predict
two ratio masks for balancing both branches of fea-
ture representation, as shown in (8), we take the

weight matrices M and ð1�MÞ on average when
inferencing the whole testing set of 824 utterances
and investigating the distribution of them in the
fusion process. Note that we crop the average
masks to 128 frames for simplicity. As depicted in
Figure 4, we can see that the BPF features tend to
put on more weights to the time-domain features
(wavegrams) than the frequency-domain features
(spectrograms), we thus deduce that the time-
domain features are probably the key component
of both SE and ASR. Furthermore, this deduction
can also be supported by the results in Table 1.
When the backbone of the masking-based SE mod-
els is the same, the time-domain models outper-
form the frequency-domain models. Taking STFT-
TCN and Conv-TasNet for instance, both of them
are based on the TCN architecture but with

TABLE 2. Results of different se models on voicebank-demand and voicebank-qut-noise.

Acoustic model SE model VoiceBank-DEMAND VoiceBank-QUT-NOISE

PESQ SI-SDR WER PESQ SI-SDR WER

CCT-AM No process 1.97 8.45 23.76 1.25 3.88 82.32

MCT-AM No process 1.97 8.45 8.31 1.25 3.88 38.87

DCCRN12 2.77 18.94 7.31 1.77 11.54 27.56

PFPL4 3.11 17.28 12.78 2.00 9.93 38.67

MetricGANþ5 3.15 8.52 8.32 2.28 2.83 43.63

TENET9 3.15 19.12 6.76 2.12 12.13 26.50

CD-DPTNet 3.01 20.00 6.81 2.13 13.65 25.17

CD-TENET 3.12 19.68 6.78 2.20 14.37 22.30

FIGURE 4. Visual Analysis on BPF module.
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different encoder-decoder architectures, and Conv-
TasNet can achieve better performance than STFT-
TCN in terms of both SI-SDR and WER.

Visualization of Spectrograms
To provide more conclusive evidence on the effective-
ness of our proposed method, here we plot the

FIGURE 5. Enhanced spectrograms of a noisy speech utterance (p232_203, 2.5dB) from the VoiceBank-DEMAND test set.

FIGURE 6. Enhanced spectrograms of a noisy speech utterance (p257_007, 0dB) from the VoiceBank-QUT-NOISE test set.
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spectrograms of two noisy utterances from Voice-
Bank-DEMAND and VoiceBank-QUT-NOISE, respec-
tively, along with their clean and enhanced duplicates
by using TENET and CD-TENET. As shown in Figures 5
and 6, both TENET and CD-TENET remarkably elimi-
nate the interrupting noise. More impressively, as the
area outlined in the red box, CD-TENET that considers
the cross-domain information seems have the inpaint-
ing capability that can fix up the missing patches on
the spectrograms. In Figure 5 (i.e., the VoiceBank-
DEMAND case), this inpainting capability mostly
recovers the speech in high-frequency bands, which
are less significant to speech recognition. Therefore, it
only causes a slight decline in WER (cf. Table 2). On
the other hand, in Figure 6, these inpainted patches
exist in both high and low-frequency bands, which
helps not only recover the clean speech more
completely but also improves the ASR performance
greatly (cf. Table 2). Moreover, it is observed that this
phenomenon mostly occurs in low SNR and non-sta-
tionary noise scenarios (i.e., the VoiceBank-QUT-
NOISE case). We refer interested readers to https://
fuann.github.io/CD-TENET for more exemplars.

CONCLUSION
In this article, we have proposed a novel cross-domain
SE model, CD-TENET, which integrates the cross-
domain information and the time-reversal SE tech-
nique to construct a more robust SE architecture for
noise-robust ASR. Compared with the state-of-the-art
SE systems, CD-TENET has demonstrated to obtain
considerable improvements not only on the front-end
SE metrics (PESQ and SI-SDR) but also the back-end
ASR (in terms of WER), especially in the test set of sce-
narios contaminated with low SNRs and nonstationary
noise sources. Experimental analysis on the proposed
BPF module also suggests that the time-domain fea-
tures are crucial to elevate the performance of SE and
ASR. In the future, we envisage that the proposed
framework can offer a promising avenue for SE. Also,
we believe that it can be further applied to other
developments, such as the audio-visual task, to learn
the shared information across image and speech data.
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